Breakthrough: Robotic limbs moved by the mind

Breakthrough: Robotic limbs moved by the mind


Pelley: In a decade of war, more than 1,300 americans have lost limbs on the battlefield. And that fact led the department of defense to start a crash program to help veterans and civilians by creating an artificial arm and hand that are amazingly human. But that’s not the breakthrough. We don’t use that word very often, because it’s overused. But when you see how they have connected this robotic limb to a human brain, you’ll understand why we made the exception. To take this ultimate step, they had to find a person willing to have brain surgery to explore new frontiers of what it is to be human. That person would have to be an explorer with desperate need, remarkable courage, and maybe most of all, a mind that is game. The person they chose is jan scheuermann, a pittsburgh mother of two and writer, with a mind nimble enough to match wits on the “wheel of fortune” in 1995. Jan Scheuermann: I’m going to solve the puzzle. “Too cute for words.” Yes! (Cheers and applause) Pelley: When her mind triumphed, her brain sent signals of delight to every muscle in her body. But a year after this moment, those brain signals were being cut off. Scheuermann: One day, I had trouble in the evening. I was making a lot of trips in and ou the car, it felt like my legs were dragging behind me. Pelley: Within two years, a genetic disease called spino- cerebellar degeneration broke the connection between brain and body. Now, at age 53, jan scheuermann can move only the muscles in her face and a few in her neck. She’s dependent on a caregiver for nearly all of her daily needs… 52 across. Pelley: …And her mother to help her solve the puzzles she loves. Healed? Scheuermann: Oh, oh, you’re good. Pelley: At the same time jan scheuermann was putting her mind to a new life, a neuroscientist, just across town at the university of pittsburgh, was imagining how people like jan might be restored. Andy schwartz, on the right, is working on an ambitious defense department project called “revolutionizing prosthetics.” Four years ago, we visited his lab, and schwartz showed us how he implanted tiny sensors like this one into the brains of monkeys, and then wired them to a crude robotic arm. Schwartz told us that, when the monkey thinks about moving his own arm, his brain cells, or neurons, fire off electrical signals. The sensor in his brain can pick up these signals and send them to the robot. So he’s operating the arm in three dimensions– up, down, forward and back? Andy Schwartz: As well as the gripper. Pelley: What you’re telling me is that the monkey is operating this arm with nothing but his thoughts? Schwartz: Absolutely. Pelley: What are the chances that a human being would be able to do this same thing? Schwartz: Oh, we think a human being could do much better. Pelley: That conversation was in 2008. And since then, the $150 million revolutionizing prosthetics program has reached farther than most thought possible. Geoffrey Ling: Awesome. Pelley: Dr. Geoffrey ling, a retired army colonel and neurologist, is in charge. After seeing the wounded on several tours in iraq and afghanistan, he told his team that he wanted a breakthrough within five years. Did any of them say, “look, colonel, we’re not sure we can do this.” Ling: Oh, absolutely. They… They thought we were crazy. But that’s quite all right, because I think it’s in our insanity that things happen. Pelley: That madness led to genius in labs all across the country. At the applied physics laboratory at johns hopkins university in maryland, michael McLOUGHLIN LED THE MULTI-MILLION Dollar engineering of what has become the most sophisticated hand and arm ever developed. It’s the same size and weight of an average man’s arm and hand, and everything is inside, including the computers and the batteries. Is there anything that your natural arm and hand can do that the mechanical hand can’t? Michael McLoughlin: Well, i can do this. (Laughs) Pelley: Okay. There’s that. McLoughlin: We can’t do that. But other than that, virtually everything your natu can do, this prosthetic is able to do. Same strength, too. Pelley: Same strength? McLoughlin: Same strength. So we can curl 45 to 50 pounds with the arm. Pelley: They’ve thought of a lot of ways to use it. When set on wheels, it can bring a human touch where no human can go. In this demonstration, we wore a visor that showed us the video feed from the robot. These gloves moved the robotic hands. And we practiced pulling a wire out of a bomb. Come on, give me that pinch. Awesome. But the holy grail in the project was finding a way to connect the robot directly to the brain. Scheuermann: Who wouldn’t want to do this? When they told me… I heard about the study, I said, “oh, absolutely.” I… I couldn’t not do this. Pelley: Last february, jan scheuermann put herself on the line for a more sophisticated version of the surgery that they had done earlier in the monkeys. There’s a brain surgery involved. It’s etal. Why were you so excited about it? Scheuermann: I’ve always believed there’s a purpose to my illness. I didn’t think I would ever find out what it was in my lifetime, and here came this study where they needed me. You know, they couldn’t just pick any tom, dick or harry off the street. And in a few years, the quadriplegics and the amputees this is just going to help. The department of defense is funding some of this for the vets. To be of use to them and service to them, what an honor. Elizabeth Tyler-Kabara: What I’m going to do right now is I’m just going to make some marks here in your hair. Pelley: The procedure was done by university of pittsburgh neurosurgeon elizabeth tyler- kabara, who showed us that the area that controls hand and arm movement is accessible right on the surface of the brain. What are the dangers? Tyler-Kabara: We worry about if we were to accidentally tear a blood vessel when we were putting them in, that we could cause a blood clot that would collect on the surface of the brain. Probably the thing we worry about the most is the possibility of infection. Pelley: I mean, you do have a connection through the skull to the outside world? Tyler-Kabara: Absolutely. May I have some irrigations? Pelley: During the six-hour surgery, two sensor arrays, each the size of a pea, were placed on the surface of jan’s brain. Woo hoo! Pelley: Then, they were wired to two computer connections called pedestals, the gateways to jan’s thoughts. You know, people are going to look at those pedestals in your skull, and they’re going to think, “that has to hurt.” Is it painful? Has it been difficult in any way? Scheuermann: For a few hours after I woke up, I had the worst case of buyer’s remorse. I was thinking, “oh, my god, i had brain surgery. Why didn’t anyone stop me? Why didn’t they say, ‘jan, you’re crazy’.” But as soon as the headache went away, that kind of talk went away, too. Pelley: Five months after the surgery, we came back to see whether she would be able to control the robotic arm with nothing but her thoughts. They plugged her brain into the computer and this is what we saw. Scheuermann: I can move up. And straight down. And left and right, and diagonally. I can close it. And open it. And I can go forward and back. Pelley: That is just the most astounding thing I’ve ever seen. Can we shake hands? Scheuermann: Sure. Pelley: No, really? Scheuermann: Yeah. Pelley: Like, come right over here? Scheuermann: Yes, you come over there. Pelley: Okay. Scheuermann: Let me grasp your hand there. There we go. Pelley: Oh, my goodness. Scheuermann: Move it up and down a little. Pelley: Wow. Scheuermann: And I can do a fist bump, if you’d like. Pelley: That’s amazing. What are you doing, jan? What’s going on in your mind as you’re moving this arm around? What are you thinking? Scheuermann: Okay, the best way to explain it is, raise your arm. Now, what did you think about when you did that? Pelley: Well, not much. I do it all the time. Scheuermann: Exactly. It’s automatic. Pelley: Is that hard work? Are you having to concentrate? Scheuermann: It… No, it was hard work getting there. I struggled greatly to go up and down at the beginning. Now, up and down is so easy, i don’t even think about it. Side to side, don’t even think about it. Pelley: Just like your arms used to? Scheuermann: Yes. Pelley: We asked dr. Ling, the program manager, where all of this is headed. Ling: I’m old enough to have watched neil armstrong take that step on the moon. And… And to watch jan do that, I had the same tingles. Because I realized that we have now stepped over a great threshold into what is possible, and very importantly, what patients can now expect in terms of restoration. This is a very important part– not rehab, but restoration of function. Pelley: I wonder what your experience with jan has taught you about the brain and the brain’s ability to adapt to new circumstances. Ling: I think it’s taught me something really fundamental, and that is we are tool users. And our arms and legs are just tools for our brain. And so, when we give another tool– in jan’s case, a robot arm– she will adapt to that tool to do the things that she wants to do. Pelley: Of course, many who could use a robot arm are not paralyzed like jan; they’re amputees. And for them, the project has found a way to connect the arm without brain surgery. 57-year-old johnny matheny lost his arm to cancer. Dr. Albert chi, from johns hopkins hospital, found the nerves that used to go to johnny’s hand and moved them to healthy muscles in his remaining limb. Albert Chi: Now, elbow extension. Pelley: Sensors on his skin pick up the brain’s signals from the nerves and use those signals to control the robotic arm. Johnny Matheny: Come here, i want to see you. Pelley: So even though the limb is missing, the brain still sends the signals as if the limb was still there? Chi: Correct. Pelley: Johnny, it feels in… In your mind like your hand is… Is there again? Chi: Yes. Pelley: As if your arm had NEVER BEEN LOST? Matheny: Correct. Pelley: Unlike jan, the connection for johnny runs both ways. Sensors in the fingers send signals back so he can feel what he’s touching. Okay, I’m holding the object and you can close on it. To see how well, we put him to the test. Hard or soft? Matheny: Soft. Pelley: Correct. Very good. Now, let’s try again. I’m holding the object. Hard or soft? Matheny: Soft. Pelley: Yep. Quite right. All right. He got it right every time. Hard or soft? Matheny: Hard. Pelley: Amazing. The next person to have jan’s surgery will have additional sensors placed in the brain to receive the sensation of touch. Andy schwartz believes that will help with some of the things that jan has trouble with. For examwhen she looks right at an object, she can’t grab it. Schwartz: Okay, I’m going to take the cone away. Just go ahead and close it. Scheuermann: Oh, sure, no problem. Schwartz: So as soon as i take the cone away, there is no problem. But as soon as I put the cone there, she can’t do it. Pelley: Why is still a mystery. The progress is coming rapidly. They are working on a wireless version of the implant to eliminate the connection in the skull. And dr. Geoffrey ling told us that the lab experiments will one day enter the real world. Ling: And we’re going to not stop at just arms and hands. I think that it’s going to open the way for things like sight and sound. And… And my dream, I dream that we’ll be able to take this into all sorts of patients– patients with stroke, patients with cerebral palsy, and the elderly. Scheuermann: I think when other quadriplegics see what I’m doing with the arm, they’re all going to say, “oh, wow! I wish I could do that!” Now, this is the way I like to eat cookies. Awesome. Thank you so much. (Applause) I just feel veryhonored to be the one who gets to do it. GO TO 60minutesovertime.com To see the bomb defusing robot known as robo-sally in action.

41 Replies to “Breakthrough: Robotic limbs moved by the mind”

  1. Shut up troll… you don't get to lecture us on hatred when you exhibit so much hatred in your comments.
    Go spread your lies somewhere else.

  2. Im an atheist, I think this is probably the most amazing to have happened, ever. What does atheism have to do with cybernetics anyway?

  3. This woman is a HERO for letting them experiment on her! The doctors and researchers are AMAZING!!! So inspiring. What hope for the future!!

  4. This could be a real reversal of fortune. Can you imagine if paralyzed people become the best robot operators available in the work force? Consider Baxter, the new inexpensive manufacturing robot. What if a new manufacturing robot was made that could be controlled by people like her, with brain implants? The merger would create a manufacturing robot of unparalleled training and processing capability. Now people without brain implants are the "junior" operators.

  5. Lunatic retards like you are scared of their own fucking shadow. THE FUCKING INTERNET ITSELF THAT YOU'RE USING RIGHT NOW WAS A DARPA PROJECT in the 70s, you inbred halfwit dumbass.

  6. Maybe I'm watching too much Jesse Ventura, but if a brain can control a robotic arm, doesn't reverse engineering scare you?

  7. The definition of the technological singularity is humans merging with computers. This is just the start.

  8. I agree that this is one step closer but why do you say 2039? I think the two dates to look for are 2030, the start of the singularity, and 2045, the date when one computer that costs 1,000 dollars will be a billion times more intelligent then all the humans on the planet today combined.

  9. Actually the internet would have been much older if a rich banker hadn't stopped a man who wanted to provide wireless communications, pictures, sounds, movies, and information and electricity for free….the "DARPA Project" just revived the man's dream…only without it being free….or electricity…so no I wouldn't give credit to someone who doesn't acknowledge that they didn't come up with the idea or did it first..as for the paranoid guy…you are being watched by military intelligence so…

  10. lmao xD so your comeback at me is supposed to be cuz I don't check my grammar on the internet? you mad bra?? cuz im actually right? why don't you go fucking read a book instead of being a 5 year old name calling little troll…Yes I meant Tesla WOW you know at least something hahaha…why wouldn't you acknowledge Tesla for what he did instead of some people taking credit for it years later??

  11. Imagine if this technology was implemented for space travel! We'd be able to experience the surface of a planet with ease and report it back!

  12. Now the next step: rather than having her use a robotic arm, use those same neural taps and interface them with the motor and sensory nerves in her arms … And Give Her Her OWN Arms Back!!!

    I have got to believe that is possible.

  13. These people should follow Fullmetal Alchemist logic and make prothstetics that connect straight to the cut undamaged nerves.

Leave a Reply

Your email address will not be published. Required fields are marked *